
PATRICK SUPPES 

TESTING THEORIES AND THE 

FOUNDATIONS OF STATISTICS 

1. HISTORICAL PERSPECTIVE 

In this paper I examine the extent to which problems the foundations 
of probability are relevant to the testing of tll(:orJies. and what view 
towards probability, if any, can be the problems- and 

found in the scientific literature. I with a historical 
and then consider particular in contemporary 

scu;:mce. In this latter discussion I confront some of the issues made salient 
Bayesians. 

and away the most serious quantitative scientific treatise in ancient 
times that uses both mathematics and in a systematic way is 

Almagest. What is surprising is in Ptolemy's Almagest and 
in astronomical treatises of ancient times is no evidence of a 
quantitative theory of error; in fact, there is of any theory of 

I error at all This is in marked contrast to astronomy's mathe-
........ " ...... ""'fA. ... and observational sophistication. It might thought that the 

of a systematic theory of error is simply a reflection of the 
u."""' ........ 'A; of any developments of a quantitative sort in probability theory 
in Hellenistic science, and consequently, an for the absence 
of an analysis in Ptolemy is easily found 

story, however, is.much more complicated, because what is true 
of Ptolemy's Almagest is also true of Newton's Principia. There is, I 

not one single computation of a quantitative error term in 
Newton's Principia. It contains a few remarks about errors, but all 
of are of a qualitative and incidental character. Again, it might be 
thought that this is simply a consequence of fact that the theory of 
probability was just being developed in quantitative form in the seven­

century, and as a result, detailed applications could hardly be 
more complicated explanations of the absence of such a 

of error are needed is testified to by the absence of such systematic 
computations of errors in Laplace~s Celestial Mechanics. Of all the 
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one would expect to find 
computations, is one. In spite of the fact that more 
than anyone else contributed to the development of the theory of prob­
ability in the eighteenth century and the early part of the nineteenth 
century, and in spite of the fact that he discusses in his treatise on the 
theory of probability the analysis of data from a probabilistic standpoint 
in order to determine evidence for 'constant causes', there is in the sys­
tematic treatise on the solar system no detailed analysis of error terms or 
any application directly of a quantitative theory of error. 

This Ptolemaic tradition did not end with Laplace, but also is found 
in Maxwell's treatise on electricity and magnetism. There is little nu­
merical confrontation between data and theory in Maxwell, and cer~ 
tainly no analysis of problems of errors of measurement In fact, from the 
standpoint of the confrontation between data and theory, there would 
seem to be some downhill sliding from the time of Ptolemy to that of 
Maxwell. 

Within astronomy proper, reporting error terms in the analysis of 
astronomical data did become common in the nineteenth century. I hope 
on another occasion to trace that history. At the present time, however, 
my understanding of it is too poor to enter into the details. It is certainly 
true that, from the standpoint of physical theory, the more important 
development of electromagnetic theory does not reflect a corresponding 
development of a sophisticated theory and practice of data analysis at 
the level characteristic of astronomy in the last half of the nineteenth 
century. 

The conceptual point of importance for this paper is that the verifica­
tion of the historically important theories of physical phenomena has 
practically never used a detailed statistical theory of confirmation to 
test empirical adequacy. In thinking about the ways in which statistics 
and probability are and should be used in science,' it seems to me that 
this historical fact is important to keep in mind so as not to create a 
simplified theory of how theories may be tested By this statement I do not 
mean to suggest that I am against the use of statistical methods in the 
verification of theories. I only enter the cautionary note that the verifica­
tion of theories is a complex business, and any simple view of how to 
apply statistical methods is bound to be inaccurate. 

Numerous other examples from the seventeenth, eighteenth, and 
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nineteenth centuries can easily found It might be thought, however, 
that these examples been superseded the stalt!stlLcal 
sophistication of the twentieth After all it may properly be 
claimed that, in of the of developments by .L4Q,I-J1a,-,·",~ 
of the deVelopment of explicit procedures of statistical inference and 
estimation dates from the or decade of the twentieth 
century, and that to a true assessment of the situation, we must 
examine some twentieth-century theories. 

THEOR.IES 

A UUiantum Mechanics 

most most theory in this is 
surely ClU~lntum mechamic:s. When one turns to the in support of 

kind of data 

--~-.• J looked in my own 
me'~haI111CS: P. A M. 

some surprises are in store. 
att«~mlpt is made to present 

res'peets GlSClrep.anc:xes exist be= 

COltlte:mtJ1onu·y treatmertts of mechan-
ics, there is often no to supporting data to examine 
als,crepal1CU~S between theory and Although data can be found in 

one can track down the eXamlltlatlon 
C!al,SlCaI eJrperifllents that are ordinarily cited in 

qU~lntum mecn~~m(:s, I believe it is to say that exists no book in 
these data are together in a way and in which 

a examination from a statistical standpoint of the between 
the data the theory is considered One classical text, Leonard Schiff's 
Quantum Mechanics (19491 list in the discussion on the physical 

. of quantum mechanics relations between the classical ex-
Young's at beginning of the 
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nineteenth century on diffraction to the Stem-Gerlach experiment in 
1922 But there is in Schiff's book no detailed discussion of the relation 
between theory and data, but only a development of the theory. On the 
other hand, turning to one of the more data-oriented books that do not 
develop the theory of quantum mechanics, for example, F. K. Richtmyer 
and E. H. Kennard, Introduction to Modern Physics (4th ed., 1947), one 
does find the experimental data and the comparisons with theoretical 
predictions. However, I believe that this classical text contains not a 
single statistical inference, nor even a statistically descriptive statistic. 
Although I have not systematically surveyed the original experimental 
literature, from my experience what I have said .about Richtmyer and 
Kennard also holds for this literature in almost all cases. 

To some extent, these references are to the older experimental literature 
in physics. Perusal of current issues of Physical Review indicates that the 
actual use of standard statistical tests can be found in a variety of ex­
perimental articles. Yet the main thrust of my 'remark is, I think, still 
correct In the testing of highly structured theories of the kind characteris­
tic of physics, there is little use of the vast apparatus of modem statistics. 

B. Econometrics 

Perhaps the sharpest scientific contrast to quantum mechanics and to 
other parts of physics can be found in economics. Among social scientists, 
econometricians are probably the most statistically sophisticated and 
the most careful in their use of statistical procedures. The analysis of data 
is superb from a statistical standpoint in most of the major work. Because 
it is true that economists deal with nonexperimental data, there is even 
more reason to be statistically explicit about the analysis and inferences 
made. In this respect, economics compares more directly with astronomy 
or meteorology than with quantum mechanics, where the data are almost 
all experimental in character. As an example of the kind of theory used in 
econometrics, I have selected a recent article by Chiswick and Mincer 
(1972). What is striking about this and other serious applications of 
mathematical concepts in economics is that when data are involved the 
model is usually of a relatively simple character without substantial 
theoretical deductions from the model itself. I quote from the second and 
third pages of the article (35-36) in which the mathematical model used for 
the analysis is stated 



TESTING THEORIES AND STATISTICS 441 

The relation between gross earnings and investment in human capital for the ith person 
in year j can be written as 

j-l 

(1) Eit = Eol + L rtlCr" 
t=1 

where the gross earnings (Ejl) are a function of the 'original' endowment (Eol) and the sum 
of the returns on previous investments (Cd)' r,f being the average rate of return to the in­
vestment in the tth year. In this expression, earnings are a linear function of dollars of 
investment. 

An alternative specification of the relation between gross earnings and investment can 
be obtained by expressing Cd as a fraction of E" (that is, C'I = krtEr/). If the original endow­
ment is assumed constant across years and individuals (Eo), we can write 

j-I i-1 

(2) EJ{=Eo+ L rJlkttEtt=Eo n (1 +rt,krl). 
1= 1 r=1 

By taking the natural log of both sides of Equation (2), since 'r,k, is small. we obtain 
(approximately) 

}-1 

(3) In(Ejt)=1nEo+ L ,,,kel • 
1= 1 

What is proposed is a simple linear model that the effects of returns on 
previous investments, as well as the function of 'the original' endowment, 
can satisfactorily be expressed in a linear way. This linear model is not 
derived from any more fundamental assumptions, nor is it the conse­
quence of elementary qualitative assumptions or of some deeper running 
formulation of economic theory. This kind of regression model is 
characteristic of applications in econometrics, and the efforts that have 
been made to understand thoroughly the statistical pitfalls of making 
inferences by use of such models are thoroughly explored in the literature, 
for example, in Malinvaud's classic work (1966). Although Malinvaud's 
book takes us beyond the kind of linear model defined by Chis wick and 
lVIincer, it does not take us far. 

It might be thought that I am pushing a kind of conservation thesis: 
the more theory the less statistics, and the less theory the more statistics. 
From an empirical standpoint there is something to be said for this. It 
is even true of the mathematics, for example. Although the mathematical 
requirements are rather different, the mathematical level of a treatise like 
Malinvaud's is, in my judgment, about comparable to the treatises on 
quantum mechanics I mentioned above, although Malinvaud's treatise 
would satisfy mathematical standards of rigor more explicitly than would 
the physical treatises. 
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Thus far I have picked two extremes of theories - one, the highly struc­
tured and developed theories of quantum mechanics, and other, the 
very simple regression models characteristic of much econometrics. It 
is natural to ask if these two examples, each extreme its own way, 
represent the whole story. I do not think this is the case, and I want to 
tum to still a third class of theories, theories that do not have the depth of 
structure and of quantum mechanics, but that have a funda~ 
mental theory and consequences that to more elaborate structures. 

C. Psychological Theories 

This third ps"cttO!C,gV, which also is more like 
of are basically 
cnalrac:rer. Although psy­

np,".ul"·t1 from a more n<l>v'l""l"t:li 

parameters in a chain of infinite order. In other 
model itself is a stochastic process that is a 
most cases the chain of is an iIOirn"('\n"11" 

W<l'll""eHln estimate 

shallower 
they can be a 
rH!Of()U~ deductions 

out of some relatively rOll{!rl-all1a·"re~LQV 

approximation to a ma~xunum~.l1KI~Urloc.a ",,_'LA,,"""'''''''''''_ or a 
mum chi-squared cases, the tests are not 
actually nor but tests 
approximate these, and whose characteristics as tests not in any sense 
been thoroughly investigated. 

In most experiments that test psychological the .U.UJl.UV1",J. 

of observations is huge, example, upwards from two or three thousand 
to twenty or thirty thousand the number of observations, 
relative statistical crudeness of a pseudo-maximum-likelihood estimate 
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is not disturbing to anyone, for it is clear that refinements of statistical 
procedure will have little effect on the summary estimate of the goodness 
of fit of the theory to data. Because of computational difficulties in many 
applications of the suitable maximum-likelihood function, the complete 
function is computed rather than seeking a solution to the derivative to 
find the maximum. The graphing of the complete function has been in­
structive in a number of cases, because when we look at the complete 
function we see that a fairly wide variation in the value of the parameter 
estimated makes little difference in the fit of the theory to the data An 
example of this for a simple linear learning model (that is, a chain of in­
finite order) in the observables is shown in Figure 1 (drawn from Suppes 
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Fig. 1. The pseudo-likelihood function, L· (6), for the linear model. 
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and Atkinson, 1960, p. 218). Note that the suitable likelihood function is 
quite flat, between 0,02 and 0.30, and consequently, any value of the 
learning parameter e lying in this interval will give about as good a fit 
as another. This kind of flatness of suitable likelihood function is another 
reason that working scientists will not take too seriously refinements of 
statistical concepts, at least insofar as they are billed as offering something 
of importance and significance to the scientist in evaluating the relation 
between theory and experiment 

3. FOUNDATIONS OF STATISTICS 

I not for a moment want to qefend the statistical practices 
physicists; in fact, I think much information in physical experiments is 
lost because of the lack of care in analysis. A good is the lack of 
the analysis of randomness in on decay of a 

sut,st~lnc:e. Such radioactive decay is cited by both physicists 
pnJUO~;Opfnelrs as a in nature. i:"'el~sOna!l) 

I tend to accept this but I would be much more secure in it if I 
had at hand the kind of massive analysis of data from radioactive decay 
that is characteristic of the kind of tests statisticians have such data 
in other domains. It is well known that it is extraordinarily difficult to 
produce that illustrate features in all 
res:pelcts. It would be curious indeed to find from what was 
expected in the matter of radioactive decay, only by the application of 
refined statistical techniques are we at all likely to find such deviations 
if they do or to confirm the view that randomness all way is the 
story. 

In spite of this example, and in spite of my willingness to criticize the 
statistical procedures physicists, I we need a way of looking at 
the foundations of statistics that takes account of the kind of rough­
and-ready theoretical tests I have described earlier in this paper. What we 
need among our concepts of logical inference statistical inference 
are appropriate ways of closing the gap between commonsense con .. 
clusions that the evidence is indeed decisive and that no refined tests are 
required. 

It may be possible to say on some occasions that it is merely a matter 
of routine work to produce the statistical distributions of data required 
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to make the inference explicit and firm, but of course this is not the way 
the matter mainly works. If one examines the discussion of these matters 
in tests like those of Richtmyer and Kennard, it is evident that the data 
are not even thought of in a way that would permit a statistical inference 
to be made. A Bayesian inference could be made only in the crudest and 
most subjective way, and yet we all admit and agree to the solidity of the 
evidence in many cases and on the extent to which it supports the theo­
retical predictions. 

There are several ways of expressing skepticism about the realism of 
objective or Bayesian approaches to this problem. Apart from the 
sophisticated problem of assuming probability distributions for data 
structures, there can be and should be proper skepticism about assigning 
a subjective or prior probability to the agreement' between an experi­
mental result and a theoretical prediction. To indicate some of the prob­
lems in a quantitative way, let E be the experimental result (which we may 
think of as a random variable) and let T be the theoretical prediction 
(which we may also think of as a random variable). We might begin by 
expressing our confidence in the agreement between the two by the fol .. 
lowing probabilistic inequality: 

(1) P(E= T» 1-8. 

The difficulty with inequality (1) is that we almost never expect the ex­
perimental result and the experimental prediction to agree exactly if the 
random variables are thought of as having an underlying continuous dis= 
tribution or, put another way, if the empirical quantities in question are 
assumed to be essentially continuous in nature. A more realistic ex­
pression of our confidence in the essential agreement between E and T 
may be expressed in the following way: 

(2) P(lE-TI<Sl»1-82' 

In both inequalities (1) and (2) we expect B, tb and tl to be small numbers, 
but already inequality (2) has assumed a rather formidable character and 
seems too elaborate for the purpose at hand 

Inequality (2) has a surface resemblance to a confidence-interval state­
ment, but the lack of an underlying theory of distributions makes develop­
ment of a theory of confidence intervals for the kind of situation I am 
talking about even more unrealistic than the use of inequalities like (2~ 
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What seems is to analyze situations of qualitative judg-
ment in terms of a qualitative theory of probability and belief. Thus, in 

terms we replace inequality (2) by the qualitative statement (3). 

(3) The event that TI is small ~ X. 

In (3), the relation ~ is the reiation for indistinguishability X is the 
certain event. (We might think of X as the sample space, but I agree with 
the Bayesians in being suspicious of having one reference space, 
and I simply to let X be a certain event I am even willing to 
oetwet:m saying a certain event X and the event X.) 

In the classical of qualitative the relation ~ 
distinguishability would be reflexive, symmetric, and transitive. Here I 
ask only it be reflexive and symmetric. For judgments of strictly 
greater probability, I use a semi order that is a relation >- that 
saLlsmes the following three ru(1()ms 

1. Not x>-x. 
2 If x>-y and y>-z then either x>-w or w>-y. 
3. If and z)-w then x>-w or z>-y. 

The indistinguishability relation the nontransitive indifference rela-
tion that can be defined in terms of strict probability preference by 
following: 

(4) A~B not A,;>-B and not 

Although one can add to the introduced and write axioms that, 
in the case of a finite number events, will lead to existence of a 
probability measure, that is not my purpose matter has 
stU(lH:~C1 elsewhere, and good results for this particular case have 

by Domotor Stelzer (1971~ in the present discussion 
I want to pursue the kind of apparatus I introduced 

As I see it is a mistake to the Bayesian move to ask the 
investigator for a subjective estimate that the agreement, for example, 
betwef:.~n experimental and theoretical results is more accurate or less ac­
curate than the accuracy with which the velocity of light is measured, or 
the specific heat of sodium. In other words, the natural thing 
would be to ask the investigator to 'calibrate' his judgment of the quality 
of the result by comparing it with other results for corresponding physical 
experiments or appropriate experiments in the domain in question. In 
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practice, this is exactly what we do not do. We expect the investigator to 
present the numerical results, and in general we expect some discrepancy 
between the experimental result and the theoretical prediction. A quali­
tative comment may be made by the investigator, such as, 'the agree~ 
ment is pretty good', or 'the agreement is not so good as we may ulti­
mately expect to obtain but the results are encouraging'. The reader and 
colleague is left to draw his own conclusion, and there is a clear restraint 
from offering a more detailed or more complete analysis. 

It is this practical sense of leaving things vague and qualitative that 
needs to be dealt with and made explicit In my judgment to insist that 
we assign sharp probability values to all of our beliefs is a mistake and a 
kind of Bayesian intellectual imperialism. I do not t~ink this corresponds 
to our actual ways of thinking, and we have been seduced by the simplicity 
and beauty of some of the Bayesian models. On the other hand, a strong 
tendency exists on the part of practicing statisticians to narrow excessively 
the domain of statistical inference, and to end up with the view that 
making a sound statistical inference is so difficult that only rarely can 
we do so, and usually only in the most carefully designed and controlled 
experiments. 

I want to trod a qualitative middle path between these two extremes of 
optimism and pessimism about the use of probabilistic and statistical 
concepts. On a previous occasion I have expressed my skepticism about 
drawing a sharp and fundamental difference between logical inference and 
statistical inference, if only because this distinction is not present in the 
ordinary use of language and ordinary thinking (Suppes, 1966). The kind 
of gap I have attempted to stress in the present discussion is one that lies 
between the present explicit theory of logical inference and the explicit 
theory of statistical inference. The appropriate place to look for the theory 
to close this gap is in the semantics of ordinary language, for although I 
have been concerned with statements made in the summary about the 
tests of theories, I think that the character of these statements is by and 
large consistent with statements of ordinary language about ordinary 
experience, and that we should not invoke a special language and a special 
apparatus. What we have left is a residue of common sense and ordinary 
language, and it is my philosophical belief that not only will this residue 
remain, but it will also remain robust in the discussion of scientific theories 
and their verification. To expect these robust uses of commonsense judg-
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ments to be eliminated from our judgments of scientific theory is a mis­
taken search for precision. In fact, as I have attempted to argue, in many 
ways the stronger the theory and the better the evidence, the less tendency 
to use any defined statistical apparatus to evaluate the predictions of the 
theory. I see no reason to think that this broad generalization will Dot COD­
tinue to hold 

This means that the intellectual task of closing the gap is almost iden­
tical with the task of giving a proper semantics for such ordinary language 
statements as: 

Almost all observations are in agreement with the experiment 
Most of the observations are in agreement with the theoretical 
predictions. 
The agreement between prediction and theory is pretty good. 
See for yoursel£ The results are not bad. 

The tools for providing such a semantical analysis are now being 
developed by a number of people, and the prospect for having a well .. 
developed theory of these matters in the future looks bright In the meanD 

time, there are many simpler ways of improving on the situation that 
have relevance both to the foundations of statistics and to the testing 
of theories. In the next section I discuss one such approach, which can 
also be used in the deeper semantical analysis still to be developed in 
detail. 

4. UPPER AND LOWER PROBABILITIES 

The first step in escaping some of the misplaced precision of standard 
statistics is to replace the concept of probability by that of upper and 
lower probability, The first part of what I have to say is developed in more 
detail in Suppes (1974) and I shall only sketch the results here. (References 
to the earlier literature are to be found in this article.) 

To begin with, let X be the sample space, ~ an algebra .of events on X, 
and A and B events, ie., elements of iY. The three essential properties we 
expect upper and lower measures on the algebra ~ to satisfy are the 
following: 

(1) P • (A);?; O. 
(II) p.(X)=P*(X)=1. 
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(III) If An B=0 then 

p *(A)+P *(B)~P .(A uB)~P*(A)+P*(B)~P*(AuB) "" 
~P* (A) + P*(B). 

From these properties we can easily show that 

P *(A)+P*("lA)= 1. 

Surprisingly enough, quite simple axioms on qualitative probability 
can be given that lead to upper and lower measures that satisfy these 
properties. The intuitive idea is to introduce standard events that play 
the role of standard scales in the measurement of weight Examples of 
standard events would be the outcomes of flipping a fair coin n number 
of times for some fixed n. 

The formal setup is as follows. The basic structures to which the axioms 
apply are quadruples (X, tj, ff, ~), where X is a nonempty set, tY is an 
algebra of subsets of X, that is, tJ is a nonempty family of subsets of X and 
is closed under union and complementation, ff is a similar algebra of sets, 
intuitively the events that are used for standard measurements, and I 
shall refer to the events in fJ' as standard events S, T, etc. The relation ~ is 
the familiar ordering relation on ij. I use standard abbreviations for 
equivalence and strict ordering in terms of the weak ordering relation. 
(A weak ordering is transitive and strongly connected, ie., for any events 
A and B, either A~B or B~A.) 

DEFINITION. A structure fI = (X, (it ff, ~) is a finite approximate 
measurement structure for beliefs if and only if X is a nonempty set, (i and 
ff are algebras of sets on X, and the following axioms are satisfied for every 
A, B, and C in tY and every Sand Tin f/: 

AXIOM 1. The relation ~ is a weak ordering oftY,' 

AXIOM 2 If AnC=0 and BnC=0 then A~B if and only if AuC 

~BuC: 

AXIOM 3. A~0; 

AXIOM 4. X>0; 
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AXIOM 5. fJ' is a finite subset of iY: 

AXIOM 6. If S#=0 then S>0: 

AXIOM 7. If S~ T then there is a V in Y- such that S~ Tu V. 
From these axioms the following theorem can be proved. 

THEOREM 1. Let !I = (X, (J, Sf, ~) be a finite approximate measure .. 
ment structure for beliefs. Then 

(i) there exists a probability measure P on f/! such that for any two 
standard events S and T 

S~ T if and only if P(S)~P(T), 

(ii) the measure P is unique and assigns the same positive probability 
to each minimal event of f/. 

(iii) if we define p. and p. as follows: 
(a) for any event A in tJ equivalent to some standard event S, 

P .(A)=P·(A)=P(S), 
(b) for any A in ty not equivalent to some standard event S, but 

lying in the minimal open interval (S, S') for standard events S 
and S' 

P .(A)=P(S) and P*(A)=P(S'), 

then p. and p* satisfy conditions (I}-{III) for upper and lower 
probabilities on ty, and 

(c) if n is the number of minimal elements in !/ then for every A in tY 
1 

P*(A)-P *(A)~-, 
(iv) if we define for A and B in ty n 

A*>B if and only if 3S in fJ' such that A>S>B, 
then *> is a semiorder on iJ, if A*>B then P*(A)~P·(B1 and if P.(A) 
~P*(B) then A~B. 

Following an earlier suggestion of Good (1962), events whose upper 
probability is 1 can be said to be almost certain, and events whose lower 
probability is 0 can be said to be almost impossible. 

Moreover, let us consider events that are not exactly equivalent to any 
of the standard events. This restriction is easy to impose on our measure-
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ment procedures if we follow procedures often used in physics by 
requiring that each nonstandard event measured be assigned to a minimal 
open interval of standard events. In terms of such properly meastlred 
events A and B, as I shall call them, we may define upper and lower 
conditional probabilities as follows: 

P$(A I B)=P.(AnB)/P$(B), 
P*(A I B)=P*(AnB)/P*(B), 

provided P *(B»O. We can then show that the upper and lower con­
ditional probabilities satisfy properties (1) to (III) except for the condition 
on P *(A)+P*(A} In particular, P .(A I B)~P*(A I B). 

Within this framework we can then develop a reasonable approxima­
tion to Bayes' theorem or to the method of maximum likelihood The 
point is that we can develop a machinery of statistical inference that is 
approximate in character and consequently is closer to the ordinary talk 
of scientists dealing with their summary evaluations of experimental tests 
of theories. 

Moreover, an important feature of the kind of setup I am describing 
is that it is not meaningful to ask for arbitrary precision in the assignment 
of upper and lower probabilities to events, but only an assignment in 
rational numbers to the scale of the finite net of standard events. Further 
questions about precision do not have a clear meaning. 

Using the kind of apparatus outlined, we can then replace, if we so 
desire, the inequality expressed in (2) in the previous section by the fol­
lowing equation using upper probabilities: 

P*(IE- T/ <81)= 1. 

We could also paraphrase this statement in the manner indicated above . 
by the qualitative statement that almost certainly all deviations between 
the experimental data and the theoretical predictions are less than e Of, 

even more qualitatively, are small. 
I should also emphasize that the particular upper and lower measures 

derived from qualitative structures satisfying the axioms given above do 
not have many of pathological characteristics of arbitrary upper and 
lower measures. This may be seen in the fairly complete theory of 
conditional upper and lower measures that follows. 1 

I believe that the approximation theory I have sketched forms a natural 
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bridge between the quantitative theory of statistics and the qualitative 
statements of ordinary scientific language. Further developments of the 
theory are needed to make clear whether my hopes are realistic or too 
sanguine. 

Stanford University 

NOTE 

1 The measurement-theoretic conception of upper and lower probabilities I use is quite 
different conceptually from the 'uncertainty' approach to such probabilities of Dempster 
(1967, 1968). Consequently, my approach to the theory of statistical inference is also for­
mally and conceptually different from Dempster's. 
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DISCUSSION 

Commentator: lindley: I have a delightful book at which describes 
how they made wheels in the middle of the last 
masterpieces construction and yet no measuring instrument 
of any sort was in their construction. Nowadays we tum out wheels 
more cheaply in vastly greater numbers partly because we use precise 
measuring instruments. My is that the fact that measurements were 
not not mean we will not be off by using them. 

I .. Hf,IJYi::-~.· A parallel which strikes me here is the situation in which 
Laplacian determinism now finds itself: Just as we have now dlS:lcov'ered 

the universe is such that we can no longer carry out Laplacian 
deterministic program (determine completely the state of the universe at 
some given of time) so we cannot carry out your suggestions - we 
simply cannot get around in our universe, andfunction at the level at which 
we wish to function, without carrying out an extensive program of mead 
surement (among other things). (Indeed, there seems to have a 
'natural line of theological succession' from the early belief that ran 
the universe in a definite fashion, to the Laplacian belief that the universe 
,ran itself in a definite fashion to Lindley's belief that we all have access to 
a unique prior probability.) Just as we cannot carry out Laplace's pro­
gram, we cannot carry out yours. The fact of the matter is that we all could 
carry around a suitable gambling apparatus which, upon the assumption 
of its independence from the rest of the universe, would serve to insure that 
we always realize Savage's axioms in a conduct of our lives. But the plain 
fact is that we do not wish to do that kind of thing, we are not constructed 
so as to operate with such a precise judgment of probabilities and in 
formulating theories of the sort that I have been discussing probability 
theorists have committed an error of misplaced precision. 

Teller: I'd like to make two comments. You mentioned briefly the 
gross unrealism of Savage's use of a class offunctions which are supposed 
to represent acts. These are, roughly, the set of all functions from possible 
present states of the world into the set of possible consequences and not 
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all of them could possibly represent acts. I should just like to comment 
that Jeffrey's system shows us how to get along without them very nicely. 

Suppes: But not how to get along without structural axioms. 
Teller: No, and that brings me to my second comment You want to 

criticize the structural axioms as also being unrealistic. Now when I think 
of these axioms I view them as capturing something like the properties of 
the system beliefs of an ideally rational person. In this case they are 
construed as normative, rather than empirical, principles and it is hard 
to see how it could be relevant to criticize them on the grounds of practical 
difficulty in their applicability. Indeed, it is hard to see why it would be 
rel{~Va]lt to them on the basis of their applicability via some given, 
practical mechanism - such as tpe gambling device you spoke about 

Lindley: situation is exactly analogous with that in Euclidean 
geometry_ The theory is precise, elegant and complex. Yet there do not 
exist the ideal 'points' 'lines' of Euclid Nevertheless, the is 
eminently practical same is of Savage's theory. 

Suppes: No, the case of Euclidean geometry is very different from 
Savage's axioms and this very example me to to the point 
The fact is we can take an indefinite in physics, to work out 
the complexities involved in applying Euclidean within 
approximations to testing our physical theories. But a of 
rationality is in a very different situation, for it is of the essence of that 

that it should show us how we go about making rational decisions 
in the light of the fact that world is constantly changing during the 
decision period, that delays have associated costs, that our lifetime is 
finite and so on - in this case considerations of time and costs are of the 
essence, whereas they are not in the case of Euclidean geometry and 
nh'b'QH"{,'1 If we were to take Savage's axioms seriously, we should have to 

the whole theory of rationality a new it would have to be allied 
with just such a theory of outlining their practical applications 
as I have indicated (using the illustration of the gambling device); but if 
this were actually done I think it is that we would be much less 
enchanted by Savage's axioms, they would be much less appealing as the 
foundations of the theory of rationality. 

Finch: Two comments. The is that it seems to me that you are not 
really attacking the Bayesian position, but rather operating still within 
it and simply pointing out that its actual applications may be a great 
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more complicated than the usual formulation of it would suggest Second 
comment is that there are actually some results which are of relevance to 
the question you raised concerning the necessary and sufficient cdndi­
tions governing the transitions ftom the discrete to the continuous case 
(from the probability relation to the continuous probability measure) 
and these results emerge from some quite deep results in measure theory, 
they are effectively contained in the works of Manneheim. 

Suppes: I certainly agree that I'm working within the Bayesian tradi­
tion here, but attacking it for its contemporary drive toward a mis­
placed precision .... 

Finch: Well, would you agree that what we really need is a calculus 
which shows us how to go from relations amongst prior probabilities 
to relations amongst posterior probabilities without having to attach 
precise, detailed numbers to them an in between. 

Suppes: Exactly. 
Giere: I should simply like to ask you to state clearly how you now 

conceive of the direction of your program of investigations in probability 
, theory - do you want to push away from personalistic probability in 

favour of a physical notion, or objective notion, of probability? 
Suppes.' At the present time I'm somewhat dualistic on this issue. I feel 

there is a firm place for a personalistic concept of probability referring to 
beliefs, though I have spoken out here against demanding too much 
precision for that notion; on the other hand I have also spoken strongly 
in "favour of a physical interpretation of the notion of probability, with 
the probabilities determined by the physical hypothesis just as in the case 
of any other physical concept. 


